Seminar Thursday July 17, 2014

Seminar Thursday July 17, 2014

Speaker: Evan Smith
Location: Physics 175
Time: 3:30, July 17 2014

Abstract: Over one hundred years ago, Dutch physicist Heike Kamerlingh Onnes discovered the phenomena of superconductivity, a property wherein some materials exhibit exactly zero electrical resistance under specific conditions. The pursuit of broadening our knowledge on this peculiar phenomena has lead the scientific community to discovering new classes of materials. Some of these materials exhibit a property known as topological superconductivity. This theoretically implies the existence of Majorana fermions, which if found to exist, hold significant promise to several areas of condensed matter and material science research. Majorana fermions allow for the most theoretically stable form of quantum computation – their existence truly has the potential to usher in a new paradigm of computation and catapult society into a new era of technology.

The goal of my research is two-fold: examining the effects of various lattice inhomogeneities on crystal structure, and gaining insight into the properties of Majorana fermions and how they might exist within topological superconductors. It is necessary to understand how the creation, stabilization, and manipulation of Majorana fermions is achieved in order to evolve into this new era. At the same time, it is fundamental that we understand how a set of inhomogeneous regions influences the properties of the elusive Majorna fermion, and how we might use that knowledge to our benefit.

We make use of the Bogoliubov de-Gennes theory, a generalization of the more conventional and well-known BCS theory, and the extended Hubbard model to obtain a low-energy effective Hamiltonian which is then used to investigate the theoretical zero-energy Andreev bound states of Majorana fermions and inhomogeneities. We utilize a set of recently adapted and developed computationally efficient algorithms along with highly parallel programming to achieve our goals.

Leave a Reply

Your email address will not be published. Required fields are marked *