Seminar Thursday July 3, 2014

Speaker: Amy Pitman
Location: Physics 175
Time: 3:30,  July 03 2014

Abstract: A society driven by the need for newer and faster technology, we have constantly pushed for a continued technological revolution. As advances in electronics continue to increase at a near exponential rate, we get closer to the limits of our advances in both size and speed. A recently emerged technology known as Spintronics may provide the opportunity needed to continue the trend of decreasing size by utilizing electron spin in electronic materials. While retaining the operation of traditional electronics, Spintronics allows for the opportunity to exploit a second pair of states — spin-up and spin-down — and exponentially increasing the potential logic operations. These properties are only achieved when both semiconducting and ferromagnetic properties exist simultaneously. This work focuses on one sub-set of Spintronic materials, Dilute Magnetic Semiconductors (DMSs), a class of materials which consist of a semiconductor doped with a small amount of transition-metal atoms. The primary system of interest is the semiconductor MoS2 doped with cobalt. We determine the dopant sites via the local bonding environment using cobalt L2,3 x-ray experiments and calculations while sulphur L2,3 x-ray experiments provide an estimate of the band gap.

 

Leave a Reply

Your email address will not be published. Required fields are marked *